AMD A10-7300 vs Intel Celeron N3010

Last updated:

CPU comparison with benchmarks

-VS-

CPU lineage

AMD A10-7300 or AMD A10-7300 – which processor offers superior performance? In this comparison, we examine disparities and assess which of these two CPUs outperforms the other. We delve into technical specifications and benchmark outcomes.
The AMD A10-7300 features 4 processor cores and has the capability to manage 4 threads concurrently.
It was released in Q2/2014 and belongs to the 4 generation of the AMD A series.
To use the AMD A10-7300, you'll need a motherboard with a FM2+ socket.
The Intel Celeron N3010 features 2 processor cores and has the capability to manage 2 threads concurrently.
It was released in Q1/2016 and belongs to the 8 generation of the Intel Celeron series.
To use the Intel Celeron N3010, you'll need a motherboard with a BGA 1170 socket.
4 Generation 8
AMD A Family Intel Celeron
AMD A10-7000 Group Intel Celeron J3000/N3000
AMD A10-7300 Name Intel Celeron N3010
Mobile Segment Mobile
 
 

CPU Cores and Base Frequency

The AMD A10-7300 has 4 CPU cores and can calculate 4 threads in parallel.
The clock frequency of the AMD A10-7300 is 1.9 GHz
and turbo frequency for one core is 3.2 GHz.
The Intel Celeron N3010 has 2 CPU cores and can calculate 2 threads in parallel.
The clock frequency of the Intel Celeron N3010 is 1.04 GHz
and turbo frequency for one core is 2.24 GHz.
4 CPU Cores 2
4 Threads 2
3.2 GHz Turbo Frequency (1 core) 2.24 GHz
1.9 GHz Frequency 1.04 GHz
4x Cores 2x
normal Core architecture normal
No Overclocking No
No Hyperthreading No
2.7 GHz Turbo Frequency (all cores) 2.24 GHz
 
 

Internal Graphics

The AMD A10-7300 has integrated graphics, called iGPU for short.
Specifically, the AMD A10-7300 uses the AMD Radeon R6 (Kaveri), which has 384 texture shaders
and 6 execution units.
The iGPU uses the system's main memory as graphics memory and sits on the processor's die.
The Intel Celeron N3010 has integrated graphics, called iGPU for short.
Specifically, the Intel Celeron N3010 uses the Intel HD Graphics 400, which has 96 texture shaders
and 12 execution units.
6 Generation 8
Q2/2015 Release date Q1/2015
-- Max. displays --
6 Execution units 12
384 Shaders 96
0.53 GHz GPU (Turbo) 0.6 GHz
0.46 GHz GPU frequency 0.32 GHz
28 nm Technology 14 nm
AMD Radeon R6 (Kaveri) GPU name Intel HD Graphics 400
2.0 GB Max. GPU Memory 8.0 GB
12 Direct X 12
 
 

Artificial Intelligence and Machine Learning

-- AI specifications --
-- AI hardware --
 
 

Hardware codec support

A photo or video codec that is accelerated in hardware can greatly accelerate the working speed of a processor and extend the battery life of notebooks or smartphones when playing videos.
Decode / Encode JPEG Decode
Decode / Encode h264 Decode / Encode
No AV1 No
No VP9 No
No h265 / HEVC (10 bit) No
Decode AVC Decode / Encode
No h265 / HEVC (8 bit) No
No VP8 Decode
Decode VC-1 Decode
 
 

Memory & PCIe

The processor supports a maximum memory capacity of 8.0 GB distributed across 2 memory channels. It offers a peak memory bandwidth of 25.6 GB/s. Both the type and quantity of memory can have a substantial impact on the overall system performance.
2 Memory channels 2
0 bytes Max. Memory 8.0 GB
DDR3-1600 Memory type DDR3L-1600
Yes AES-NI Yes
-- Bandwidth 25.6 GB/s
No ECC No
pci PCIe pci
 
 

Thermal Management

The processor has a thermal design power (TDP) of 19 W watts.
TDP indicates the cooling solution needed to effectively manage the processor's heat. It generally provides an approximate indication of the actual power consumption of the CPU itself.
The processor has a thermal design power (TDP) of 4 W watts.
19 W TDP (PL1 / PBP) 4 W
-- Tjunction max 90 °C
None TDP down 3 W
 
 

Technical details

The AMD A10-7300 is manufactured using a 28 nm process.
A smaller manufacturing process indicates a more contemporary and energy-efficient CPU.
In total, this processor boasts a generous 4.0 MB cache.
A substantial cache can significantly enhance the processor's performance, particularly in scenarios like gaming.
The Intel Celeron N3010 is manufactured using a 14 nm process.
In total, this processor boasts a generous 2.0 MB cache.
Q2/2014 Release date Q1/2016
Kaveri (Steamroller) Architecture Braswell
Technical data sheet Documents Technical data sheet
AMD-V Virtualization VT-x, VT-x EPT
-- Chip design Monolithic
4.0 MB L3-Cache 2.0 MB
SSE4a, SSE4.1, SSE4.2, AVX, FMA3, FMA4 ISA extensions SSE4.1, SSE4.2
28 nm Technology 14 nm
FM2+ Socket BGA 1170
x86-64 (64 bit) Instruction set (ISA) x86-64 (64 bit)
-- Part Number --
-- Release price --
Operating systems Windows 10, Linux
0 bytes L2-Cache 0 bytes
 
 

Benchmarks

Geekbench 3, 64bit (Multi-Core)

AMD A10-7300
4C 4T @ 1.9 GHz
3224
3224
Intel Celeron N3010
2C 2T @ 1.04 GHz
1624
1624

Geekbench 3, 64bit (Single-Core)

AMD A10-7300
4C 4T @ 1.9 GHz
1310
1310
Intel Celeron N3010
2C 2T @ 1.04 GHz
941
941

Geekbench 5, 64bit (Multi-Core)

AMD A10-7300
4C 4T @ 1.9 GHz
823
823
Intel Celeron N3010
2C 2T @ 1.04 GHz
427
427

Geekbench 5, 64bit (Single-Core)

AMD A10-7300
4C 4T @ 1.9 GHz
322
322
Intel Celeron N3010
2C 2T @ 1.04 GHz
226
226

Cinebench R15 (Multi-Core)

AMD A10-7300
4C 4T @ 1.9 GHz
139
139
Intel Celeron N3010
2C 2T @ 1.04 GHz
69
69

Cinebench R15 (Single-Core)

AMD A10-7300
4C 4T @ 1.9 GHz
44
44
Intel Celeron N3010
2C 2T @ 1.04 GHz
38
38

Cinebench R11.5, 64bit (Multi-Core)

AMD A10-7300
4C 4T @ 1.9 GHz
1.8
1.8
Intel Celeron N3010
2C 2T @ 1.04 GHz
0.9
0.9