AMD A4-6210 vs AMD A6-6310

Last updated:

CPU comparison with benchmarks

-VS-

CPU lineage

AMD A4-6210 or AMD A4-6210 – which processor offers superior performance? In this comparison, we examine disparities and assess which of these two CPUs outperforms the other. We delve into technical specifications and benchmark outcomes.
The AMD A4-6210 features 4 processor cores and has the capability to manage 4 threads concurrently.
It was released in Q2/2014 and belongs to the 3 generation of the AMD A series.
To use the AMD A4-6210, you'll need a motherboard with a AM1 socket.
The AMD A6-6310 features 4 processor cores and has the capability to manage 4 threads concurrently.
To use the AMD A6-6310, you'll need a motherboard with a AM1 socket.
3 Generation 3
AMD A Family AMD A
AMD A4-6000 Group AMD A6-6000
AMD A4-6210 Name AMD A6-6310
Desktop / Server Segment Desktop / Server
 
 

CPU Cores and Base Frequency

The AMD A4-6210 has 4 CPU cores and can calculate 4 threads in parallel.
The clock frequency of the AMD A4-6210 is 1.8 GHz
The AMD A6-6310 has 4 CPU cores and can calculate 4 threads in parallel.
The clock frequency of the AMD A6-6310 is 2.0 GHz
and turbo frequency for one core is 2.4 GHz.
None None 2.4 GHz
4 Threads 4
1.8 GHz Frequency 2.0 GHz
4x Cores 4x
No Hyperthreading No
None None 2.4 GHz
4 CPU Cores 4
normal Core architecture normal
No Overclocking No
 
 

Internal Graphics

The AMD A4-6210 has integrated graphics, called iGPU for short.
Specifically, the AMD A4-6210 uses the AMD Radeon R3 (Beema), which has 128 texture shaders
and 2 execution units.
The iGPU uses the system's main memory as graphics memory and sits on the processor's die.
The AMD A6-6310 has integrated graphics, called iGPU for short.
Specifically, the AMD A6-6310 uses the AMD Radeon R4 (Beema), which has 128 texture shaders
6 Generation 6
Q2/2014 Release date Q2/2014
-- Max. displays --
2 Execution units 2
128 Shaders 128
-- GPU (Turbo) --
0.6 GHz GPU frequency 0.8 GHz
28 nm Technology 28 nm
AMD Radeon R3 (Beema) GPU name AMD Radeon R4 (Beema)
2.0 GB Max. GPU Memory 2.0 GB
12 Direct X 12
 
 

Artificial Intelligence and Machine Learning

-- AI specifications --
-- AI hardware --
 
 

Hardware codec support

A photo or video codec that is accelerated in hardware can greatly accelerate the working speed of a processor and extend the battery life of notebooks or smartphones when playing videos.
Decode / Encode JPEG Decode / Encode
Decode h264 Decode
No AV1 No
No VP9 No
No h265 / HEVC (10 bit) No
Decode AVC Decode
No h265 / HEVC (8 bit) No
No VP8 No
Decode VC-1 Decode
 
 

Memory & PCIe

2 Memory channels 2
0 bytes Max. Memory 0 bytes
DDR3L-1600 Memory type DDR3L-1866
Yes AES-NI Yes
-- Bandwidth --
No ECC No
pci PCIe pci
 
 

Thermal Management

The processor has a thermal design power (TDP) of 15 W watts.
TDP indicates the cooling solution needed to effectively manage the processor's heat. It generally provides an approximate indication of the actual power consumption of the CPU itself.
15 W TDP (PL1 / PBP) 15 W
-- Tjunction max --
 
 

Technical details

The AMD A4-6210 is manufactured using a 32 nm process.
A smaller manufacturing process indicates a more contemporary and energy-efficient CPU.
In total, this processor boasts a generous 2.0 MB cache.
A substantial cache can significantly enhance the processor's performance, particularly in scenarios like gaming.
The AMD A6-6310 is manufactured using a 32 nm process.
Q2/2014 Release date Q2/2014
Richland (Piledriver) Architecture Richland (Piledriver)
Technical data sheet Documents Technical data sheet
AMD-V Virtualization AMD-V
-- Chip design --
2.0 MB L3-Cache 2.0 MB
SSE4a, SSE4.1, SSE4.2, AVX, FMA3, FMA4 ISA extensions SSE4a, SSE4.1, SSE4.2, AVX, FMA3, FMA4
32 nm Technology 32 nm
AM1 Socket AM1
x86-64 (64 bit) Instruction set (ISA) x86-64 (64 bit)
-- Part Number --
-- Release price --
Windows 10, Linux Operating systems Windows 10, Linux
0 bytes L2-Cache 0 bytes