AMD A4-5000 vs AMD E2-3800

Last updated:

CPU comparison with benchmarks

-VS-

CPU lineage

AMD A4-5000 or AMD A4-5000 – which processor offers superior performance? In this comparison, we examine disparities and assess which of these two CPUs outperforms the other. We delve into technical specifications and benchmark outcomes.
The AMD A4-5000 features 4 processor cores and has the capability to manage 4 threads concurrently.
It was released in Q3/2013 and belongs to the 4 generation of the AMD A series.
The AMD E2-3800 features 4 processor cores and has the capability to manage 4 threads concurrently.
It was released in Q4/2013 and belongs to the 3 generation of the AMD E series.
4 Generation 3
AMD A Family AMD E
AMD A4-5000 Group AMD E2-3000
AMD A4-5000 Name AMD E2-3800
Mobile Segment Mobile
 
 

CPU Cores and Base Frequency

The AMD A4-5000 has 4 CPU cores and can calculate 4 threads in parallel.
The clock frequency of the AMD A4-5000 is 1.5 GHz
The AMD E2-3800 has 4 CPU cores and can calculate 4 threads in parallel.
The clock frequency of the AMD E2-3800 is 1.3 GHz
1.5 GHz Frequency 1.3 GHz
4 CPU Cores 4
4x Cores 4x
normal Core architecture normal
Yes Overclocking Yes
No Hyperthreading No
4 Threads 4
 
 

Internal Graphics

The AMD A4-5000 has integrated graphics, called iGPU for short.
Specifically, the AMD A4-5000 uses the AMD Radeon HD 8330, which has 128 texture shaders
and 2 execution units.
The iGPU uses the system's main memory as graphics memory and sits on the processor's die.
The AMD E2-3800 has integrated graphics, called iGPU for short.
Specifically, the AMD E2-3800 uses the AMD Radeon HD 8280, which has 128 texture shaders
5 Generation 5
Q2/2013 Release date Q2/2013
-- Max. displays --
2 Execution units 2
128 Shaders 128
-- GPU (Turbo) --
0.5 GHz GPU frequency 0.45 GHz
28 nm Technology 28 nm
AMD Radeon HD 8330 GPU name AMD Radeon HD 8280
2.0 GB Max. GPU Memory 2.0 GB
11.1 Direct X 11.1
 
 

Artificial Intelligence and Machine Learning

-- AI specifications --
-- AI hardware --
 
 

Hardware codec support

A photo or video codec that is accelerated in hardware can greatly accelerate the working speed of a processor and extend the battery life of notebooks or smartphones when playing videos.
Decode / Encode JPEG Decode / Encode
Decode h264 Decode
No AV1 No
No VP9 No
No h265 / HEVC (10 bit) No
Decode AVC Decode
No h265 / HEVC (8 bit) No
No VP8 No
Decode VC-1 Decode
 
 

Memory & PCIe

2 Memory channels 1
0 bytes Max. Memory 0 bytes
DDR3L-1600 Memory type DDR3L-1600
Yes AES-NI Yes
-- Bandwidth --
No ECC No
pci PCIe pci
 
 

Thermal Management

The processor has a thermal design power (TDP) of 15 W watts.
TDP indicates the cooling solution needed to effectively manage the processor's heat. It generally provides an approximate indication of the actual power consumption of the CPU itself.
15 W TDP (PL1 / PBP) 15 W
-- Tjunction max --
 
 

Technical details

The AMD A4-5000 is manufactured using a 28 nm process.
A smaller manufacturing process indicates a more contemporary and energy-efficient CPU.
In total, this processor boasts a generous 2.0 MB cache.
A substantial cache can significantly enhance the processor's performance, particularly in scenarios like gaming.
The AMD E2-3800 is manufactured using a 28 nm process.
Q3/2013 Release date Q4/2013
Kabini (Jaguar) Architecture Llano (K10)
Technical data sheet Documents Technical data sheet
AMD-V Virtualization AMD-V
-- Chip design --
2.0 MB L3-Cache 2.0 MB
SSE4a, SSE4.1, SSE4.2, AVX ISA extensions SSE3, SSE4a
28 nm Technology 28 nm
Socket
x86-64 (64 bit) Instruction set (ISA) x86-64 (64 bit)
-- Part Number --
115 $ Release price --
Operating systems
0 bytes L2-Cache 0 bytes