AMD G-T56N vs AMD FX-8140

Last updated:

CPU comparison with benchmarks

-VS-

CPU lineage

AMD G-T56N or AMD G-T56N – which processor offers superior performance? In this comparison, we examine disparities and assess which of these two CPUs outperforms the other. We delve into technical specifications and benchmark outcomes.
The AMD G-T56N features 2 processor cores and has the capability to manage 2 threads concurrently.
It was released in Q1/2011 and belongs to the 1 generation of the AMD G series.
The AMD FX-8140 features 8 processor cores and has the capability to manage 8 threads concurrently.
It was released in Q4/2012 and belongs to the 2 generation of the AMD FX series.
To use the AMD FX-8140, you'll need a motherboard with a AM3+ socket.
AMD G-T56N Name AMD FX-8140
1 Generation 2
AMD G Family AMD FX
Mobile Segment Desktop / Server
AMD G Group AMD FX-8000
 
 

CPU Cores and Base Frequency

The AMD G-T56N has 2 CPU cores and can calculate 2 threads in parallel.
The clock frequency of the AMD G-T56N is 1.65 GHz
The AMD FX-8140 has 8 CPU cores and can calculate 8 threads in parallel.
The clock frequency of the AMD FX-8140 is 3.2 GHz
and turbo frequency for one core is 4.1 GHz.
The number of CPU cores greatly affects the speed of the processor and is an important performance indicator.
2x Cores 8x
2 Threads 8
No Hyperthreading No
None None 4.1 GHz
None None 4.1 GHz
No Overclocking Yes
normal Core architecture normal
1.65 GHz Frequency 3.2 GHz
2 CPU Cores 8
 
 

Internal Graphics

The AMD G-T56N has integrated graphics, called iGPU for short.
Specifically, the AMD G-T56N uses the AMD Radeon HD 6310, which has 80 texture shaders
and 1 execution units.
The iGPU uses the system's main memory as graphics memory and sits on the processor's die.
The AMD FX-8140 does not have integrated graphics.
80 Shaders --
-- GPU (Turbo) --
1.0 GB Max. GPU Memory 0 bytes
1 Execution units --
3 Generation --
40 nm Technology --
AMD Radeon HD 6310 GPU name
Q4/2010 Release date --
-- Max. displays --
11 Direct X --
0.49 GHz GPU frequency --
 
 

Artificial Intelligence and Machine Learning

-- AI specifications --
-- AI hardware --
 
 

Hardware codec support

A photo or video codec that is accelerated in hardware can greatly accelerate the working speed of a processor and extend the battery life of notebooks or smartphones when playing videos.
Decode / Encode JPEG --
No h265 / HEVC (10 bit) --
No VP8 --
No h265 / HEVC (8 bit) --
No VP9 --
Decode AVC --
No AV1 --
Decode VC-1 --
Decode h264 --
 
 

Memory & PCIe

0 bytes Max. Memory 0 bytes
-- Bandwidth --
pci PCIe pci
1 Memory channels 2
No ECC Yes
No AES-NI Yes
DDR3-1333 Memory type DDR3-1866
 
 

Thermal Management

The processor has a thermal design power (TDP) of 18 W watts.
TDP indicates the cooling solution needed to effectively manage the processor's heat. It generally provides an approximate indication of the actual power consumption of the CPU itself.
The processor has a thermal design power (TDP) of 95 W watts.
-- Tjunction max --
18 W TDP (PL1 / PBP) 95 W
 
 

Technical details

The AMD G-T56N is manufactured using a 40 nm process.
A smaller manufacturing process indicates a more contemporary and energy-efficient CPU.
In total, this processor boasts a generous 1.0 MB cache.
A substantial cache can significantly enhance the processor's performance, particularly in scenarios like gaming.
The AMD FX-8140 is manufactured using a 32 nm process.
In total, this processor boasts a generous 8.0 MB cache.
-- Part Number --
Operating systems Windows 10, Linux
-- Chip design --
SSE3, SSE4a ISA extensions SSE4.1, SSE4.2, AVX, FMA3, FMA4
1.0 MB L3-Cache 8.0 MB
Ontario (Bobcat) Architecture Vishera (Bulldozer)
x86-64 (64 bit) Instruction set (ISA) x86-64 (64 bit)
Socket AM3+
-- Release price --
Technical data sheet Documents Technical data sheet
AMD-V Virtualization AMD-V
40 nm Technology 32 nm
Q1/2011 Release date Q4/2012
0 bytes L2-Cache 0 bytes