HiSilicon Kirin 658 vs Samsung Exynos 3110

Last updated:

CPU comparison with benchmarks

-VS-

CPU lineage

HiSilicon Kirin 658 or HiSilicon Kirin 658 – which processor offers superior performance? In this comparison, we examine disparities and assess which of these two CPUs outperforms the other. We delve into technical specifications and benchmark outcomes.
The HiSilicon Kirin 658 features 8 processor cores and has the capability to manage 8 threads concurrently.
It was released in Q2/2016 and belongs to the 4 generation of the HiSilicon Kirin series.
Mobile Segment --
HiSilicon Kirin 650 Group
HiSilicon Kirin 658 Name Samsung Exynos 3110
HiSilicon Kirin Family
4 Generation --
 
 

CPU Cores and Base Frequency

The HiSilicon Kirin 658 has 8 CPU cores and can calculate 8 threads in parallel.
The clock frequency of the A-Core is 2.35 GHz.
The number of CPU cores greatly affects the speed of the processor and is an important performance indicator.
Processors with hybrid (big.LITTLE) architecture strike a balance between performance and power efficiency, making them ideal for mobile devices.
No Overclocking No
8 Threads --
4x Cortex-A53 Cores B None
hybrid (big.LITTLE) Core architecture --
No Hyperthreading No
1.7 GHz B-Core Frequency None
4x Cortex-A53 Cores A None
2.35 GHz A-Core Frequency None
8 CPU Cores --
 
 

Internal Graphics

The HiSilicon Kirin 658 has integrated graphics, called iGPU for short.
Specifically, the HiSilicon Kirin 658 uses the ARM Mali-T830 MP2, which has 32 texture shaders
and 2 execution units.
The iGPU uses the system's main memory as graphics memory and sits on the processor's die.
The Samsung Exynos 3110 does not have integrated graphics.
ARM Mali-T830 MP2 GPU name
-- GPU (Turbo) --
28 nm Technology --
0 bytes Max. GPU Memory 0 bytes
32 Shaders --
11 Direct X --
-- Max. displays --
Q4/2015 Release date --
0.9 GHz GPU frequency --
2 Execution units --
Midgard 4 Generation --
 
 

Artificial Intelligence and Machine Learning

-- AI hardware --
-- AI specifications --
 
 

Hardware codec support

A photo or video codec that is accelerated in hardware can greatly accelerate the working speed of a processor and extend the battery life of notebooks or smartphones when playing videos.
Decode / Encode h265 / HEVC (8 bit) --
Decode / Encode h264 --
Decode h265 / HEVC (10 bit) --
Decode / Encode JPEG --
No VC-1 --
No AVC --
Decode / Encode VP8 --
No VP9 --
No AV1 --
 
 

Memory & PCIe

No AES-NI No
pci PCIe pci
2 Memory channels --
No ECC No
0 bytes Max. Memory 0 bytes
LPDDR3-933 Memory type
-- Bandwidth --
 
 

Thermal Management

TDP indicates the cooling solution needed to effectively manage the processor's heat. It generally provides an approximate indication of the actual power consumption of the CPU itself.
-- Tjunction max --
 
 

Technical details

The HiSilicon Kirin 658 is manufactured using a 16 nm process.
A smaller manufacturing process indicates a more contemporary and energy-efficient CPU.
A substantial cache can significantly enhance the processor's performance, particularly in scenarios like gaming.
-- Release price --
Socket
-- Part Number --
Technical data sheet Documents Technical data sheet
Cortex-A53 / Cortex-A53 Architecture --
0 bytes L3-Cache 0 bytes
0 bytes L2-Cache 0 bytes
Android Operating systems
Chiplet Chip design --
Q2/2016 Release date --
ARMv8-A64 (64 bit) Instruction set (ISA)
16 nm Technology --
None Virtualization
ISA extensions