Intel Xeon E5-2620 v2 vs Intel Xeon Gold 6140

Last updated:

CPU comparison with benchmarks

-VS-

CPU lineage

Intel Xeon E5-2620 v2 or Intel Xeon E5-2620 v2 – which processor offers superior performance? In this comparison, we examine disparities and assess which of these two CPUs outperforms the other. We delve into technical specifications and benchmark outcomes.
The Intel Xeon E5-2620 v2 features 6 processor cores and has the capability to manage 12 threads concurrently.
It was released in Q3/2013 and belongs to the 4 generation of the Intel Xeon E5 series.
To use the Intel Xeon E5-2620 v2, you'll need a motherboard with a LGA 2011 socket.
The Intel Xeon Gold 6140 features 18 processor cores and has the capability to manage 36 threads concurrently.
It was released in Q3/2017 and belongs to the 1 generation of the Intel Xeon Gold series.
To use the Intel Xeon Gold 6140, you'll need a motherboard with a LGA 3647 socket.
Intel Xeon E5 v2 Group Intel Xeon Gold 5100/6100
Desktop / Server Segment Desktop / Server
4 Generation 1
Intel Xeon E5-2620 v2 Name Intel Xeon Gold 6140
Intel Xeon E5 Family Intel Xeon Gold
 
 

CPU Cores and Base Frequency

The Intel Xeon E5-2620 v2 has 6 CPU cores and can calculate 12 threads in parallel.
The clock frequency of the Intel Xeon E5-2620 v2 is 2.1 GHz
and turbo frequency for one core is 2.6 GHz.
The number of CPU cores greatly affects the speed of the processor and is an important performance indicator.
The Intel Xeon Gold 6140 has 18 CPU cores and can calculate 36 threads in parallel.
The clock frequency of the Intel Xeon Gold 6140 is 2.3 GHz
and turbo frequency for one core is 3.7 GHz.
normal Core architecture normal
2.6 GHz Turbo Frequency (1 core) 3.7 GHz
6x Cores 18x
2.3 GHz Turbo Frequency (all cores) None
12 Threads 36
Yes Hyperthreading Yes
2.1 GHz Frequency 2.3 GHz
No Overclocking No
6 CPU Cores 18
 
 

Internal Graphics

The Intel Xeon E5-2620 v2 does not have integrated graphics.
The Intel Xeon Gold 6140 does not have integrated graphics.
-- GPU (Turbo) --
GPU name
-- Direct X --
-- GPU frequency --
-- Technology --
-- Max. displays --
-- Shaders --
-- Execution units --
-- Release date --
-- Generation --
0 bytes Max. GPU Memory 0 bytes
 
 

Artificial Intelligence and Machine Learning

-- AI hardware --
-- AI specifications --
 
 

Hardware codec support

A photo or video codec that is accelerated in hardware can greatly accelerate the working speed of a processor and extend the battery life of notebooks or smartphones when playing videos.
-- AVC --
-- AV1 --
-- h264 --
-- VC-1 --
-- h265 / HEVC (10 bit) --
-- h265 / HEVC (8 bit) --
-- VP8 --
-- JPEG --
-- VP9 --
 
 

Memory & PCIe

The processor supports a maximum memory capacity of 768.0 GB distributed across 4 memory channels. It offers a peak memory bandwidth of 51.2 GB/s. Both the type and quantity of memory can have a substantial impact on the overall system performance.
The processor supports a maximum memory capacity of 768.0 GB distributed across 6 memory channels. It offers a peak memory bandwidth of 128.1 GB/s. Both the type and quantity of memory can have a substantial impact on the overall system performance.
DDR3-1600 Memory type DDR4-2666
4 Memory channels 6
51.2 GB/s Bandwidth 128.1 GB/s
pci PCIe pci
Yes AES-NI Yes
768.0 GB Max. Memory 768.0 GB
Yes ECC Yes
 
 

Thermal Management

The processor has a thermal design power (TDP) of 80 W watts.
TDP indicates the cooling solution needed to effectively manage the processor's heat. It generally provides an approximate indication of the actual power consumption of the CPU itself.
The processor has a thermal design power (TDP) of 140 W watts.
80 W TDP (PL1 / PBP) 140 W
-- Tjunction max --
 
 

Technical details

The Intel Xeon E5-2620 v2 is manufactured using a 22 nm process.
A smaller manufacturing process indicates a more contemporary and energy-efficient CPU.
In total, this processor boasts a generous 15.0 MB cache.
A substantial cache can significantly enhance the processor's performance, particularly in scenarios like gaming.
The Intel Xeon Gold 6140 is manufactured using a 14 nm process.
In total, this processor boasts a generous 25.0 MB cache.
Ivy Bridge EP Architecture Skylake
0 bytes L2-Cache 0 bytes
Monolithic Chip design Monolithic
Windows 10, Linux Operating systems Windows 10, Linux
LGA 2011 Socket LGA 3647
Technical data sheet Documents Technical data sheet
22 nm Technology 14 nm
320 $ Release price 5400 $
x86-64 (64 bit) Instruction set (ISA) x86-64 (64 bit)
Q3/2013 Release date Q3/2017
-- Part Number --
15.0 MB L3-Cache 25.0 MB
SSE4.1, SSE4.2, AVX ISA extensions SSE4.1, SSE4.2, AVX2, AVX-512
VT-x, VT-x EPT, VT-d Virtualization VT-x, VT-x EPT, VT-d
 
 

Benchmarks

Geekbench 3, 64bit (Multi-Core)

Intel Xeon Gold 6140
18C 36T @ 2.3 GHz
52311
52311
Intel Xeon E5-2620 v2
6C 12T @ 2.1 GHz
26200
26200

Geekbench 5, 64bit (Multi-Core)

Intel Xeon Gold 6140
18C 36T @ 2.3 GHz
14643
14643
Intel Xeon E5-2620 v2
6C 12T @ 2.1 GHz
4812
4812

Geekbench 6 (Multi-Core)

Intel Xeon Gold 6140
18C 36T @ 2.3 GHz
9744
9744
Intel Xeon E5-2620 v2
6C 12T @ 2.1 GHz
3643
3643

Geekbench 3, 64bit (Single-Core)

Intel Xeon Gold 6140
18C 36T @ 2.3 GHz
4130
4130
Intel Xeon E5-2620 v2
6C 12T @ 2.1 GHz
2350
2350

Cinebench R15 (Multi-Core)

Intel Xeon Gold 6140
18C 36T @ 2.3 GHz
2785
2785
Intel Xeon E5-2620 v2
6C 12T @ 2.1 GHz
710
710

Geekbench 6 (Single-Core)

Intel Xeon Gold 6140
18C 36T @ 2.3 GHz
1272
1272
Intel Xeon E5-2620 v2
6C 12T @ 2.1 GHz
510
510